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SOME WINDOWS WITH VERY GOOD
SIDELOBE BEHAVIOR;
APPLICATION TO DISCRETE
HILBERT TRANSFORM

INTRODUCTION

The use of temporal weightings for spectral analysis, with good sidelobe behavior
and small bias, is well established and documented in Harris (ref. 1). However,
some of the plots of the spectral windows are not correct and do not have the op-
timal sidelobe levels claimed. We will present the corrected plots and some ad-
ditional windows with optimal properties. Finally, some of these results will be
applied to obtain a discrete Hilbert transform,

The temporal weightings considered will be continuous functions of time (except
possibly att = + L/2)and durationL;i.e.,

w(t)=0 for [t|>L/2. H

The Fourier transform of the temporal weighting is the spectral window

1.72

W(f) = f dt w(t) exp(-i2nft) Q)
=1./2

and is a continuous function of frequency, defined for all f. Notice the notational
convention adopted here: a weighting is applied multiplicatively in one domain, and
its Fourier-transform (called a window) occurs as a convolution in the other
domain,

All the window results presented here are obtained by exact analytical evaluation
of (2) and are valid for all values of f. However, window (2) can be approximately
evaluated at any f, by means of some numerical integration rule (such as
Trapezoidal), by choosing increment A=L/M, where M is a large integer. These
latter results are not adequate for | f |>.5/4, because the approximation yielded by
this numerical integration procedure has period 1/4 in f. Furthermore, if we limit
the frequencies f, at which this numerical evaluation is conducted, to the values
n/(NA) (for n and N integer), the results can be realized as an N-point discrete
Fourier transform (DFT). Since the frequency spacing at which these values occur is
(NA)! and the width of the spectral window (2) is of the order 1/L = (MA)"!, we
would also require N>M if we desire to observe fairly closely the changes in the
window (2) by means of an N-point DFT. There is no fundamental restriction on the
relative sizes of M and N; however, M must be large in order to obtain an accurate
approximation to (2).
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GENERAL WEIGHTING CONSIDERATIONS

The temporal weightings of interest here are of the form

K
w(t) = lt kZ_Oakcos(ant/L) for [t{<L/2, 3)

where {a, }(')( are real constants. The weighting is symmetric about t = 0 and possesses
all orders of derivatives for | t |[<L/2; however, discontinuities in w(t), defined by
(1) and (3), or in its derivatives, occur at t = = L/2. These discontinuities dictate
the asymptotic behavior for large | f | of W(f) in (2). Without loss of generality, the
weighting is normalized according to

a 1 < 1
goa“:l; w(0)= T kz:oakzt’ (@)

Observe from (3) that

K
Ly_y -1 Z1)K
w(z3) =lim w= 2 CDkay, (5)

which may or may not be equal to zero. If (5) is not zero, then weighting w(t) is
discontinuous att = + L/2, and window W(f) will decay only as 1/f for large | f |.

However, if (5) is zero, then w(t) is continuous for all t. Also, w'(t) is continuous
for all t, since we always have

K
W= -2 S kaysin@ukv/L) for (4<L/2, ©6)
k=0
and
I'ix‘nl/2 w'()=0; w'()=0 for [t|>L/2. 7)
in—~Ls2-

The last property follows from (1). Thus, when weighting values w(+ L/2) in (5) are
zero, w(t) and w (1) are both continuous for all t.

However, w '(t) may then not be continuous at t= + L/2, We have from (6),

2 K
w(t) = _‘% S k2a, cos(2nkt/L) for |t|<L/2 8)
k=0
and
im wrm=- 4T 3 Chika,, (9)
=12~ LY &




s

LI L

T ey, ]

which may or may not be zero. If (9) is not zero, then w "(t) is discontinuous at
t = x=L/2, and W(f) will decay as 1/f3 for large | f].

Conversely, if (9) is zero, then w'(t) is continuous for all t, and it follows
(similarly to above) that w"'(1) is continuous for all t. Then W(f) decays at least as
fastas 1/f3 for large | f |. We will have occasion to use these relations later.

The spectral window corresponding 10 w(t) in (1) and (3) is given by (2) as the
closed form expression

i K k X \
W(t) = Lt sin(nLf) > Erag rorallf;

m 70 Laf2-k2
ag, n=0
Wn/Ly= {

If we expand (L2f2-k2)"! in a power series in (LLf) ? we obtain

sin(ni f) = 1 a
w= DS 5 (-)hkma, for |LfP>K.
0

nLf m-o(L)2m = (10B)

Thus, the guantities (5) and (9) considered above are simply the m=0 and m =1
coefficients of this expansion; the asymptotic behavior of (10B) depends on the first
non-zero term in the m-series, and will be plotted in the tollowing figures as a dotted

line.

TR 6239
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DISCRETE FOURIER SERIES

When continuous temporal weighting is used in digital processing, it is sampled
and often transformed into the frequency domain, where its effect can be included
as a convolution of its discrete Fourier series with the data DFT. To evaluate this
discrete Fourier series, we begin by delaying the temporal weight to the interval
(O,L):

_ L\ 1<
wp=w(t-5)= T > (-1)*a, cos(2nkt/L)
k=0
K
- IT 3 (-Dkeeay exp(iznkt/L) for O<I< L,
k=-K
(11
where
£ = 1,k=0
K7 v, k#0 ] . (12)
Let the sampling interval on weighting wp(t) be
A=L/M, (13)
where M is even; then samples (temporal weights)
L
wp(mld) = -~ 2 (-D¥g a, expli2nkm/M)  for 0<Sm<M . (14)
k- -K ‘

Then for M>2K, the discrete Fourier series is given by the M-point DFT (ref. 2, ch.
3)*

M-1
2 Awp(mb)exp(-i2znmn/M) = (-1)"g,a, for n|<M/2. (15A)
m=0

Thus, the effects of temporal weighting (14) can be incorporated in a digital
processing application as a frequency convolution of the data DFT with the

sequence

...,0,0,(-1)K %ak, cee —%a,,ao.—%a,, c-DE 173,(,0,0, ... . (15B)

This is one of the main reasons for employing weightings of the form (14) in digital
processing applications; namely, the effects of temporal weighting are easily in-

* This consideration is different from that mentioned under (2),where we were
interested in approximately evaluating window W(f) in (2) by means of a DFT.
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cluded by means of convolution in the discrete frequency domain with a short
sequence of length 2K + 1.

The effect of sampling continuous weighting w(t) at increment A, in so far as the
effective window is concerned, is as follows. The effective window is*

Wi = [ duady(t) w(t) exp(-i2nft)

=4 W= Wi-), (16)

n=-—o

where d,(x) is an infinite unit-area impulse train in x at spacing a. Thus there are
periodic replications in W,(f) at multiples of 1/4; the aliasing at f= +.5/A is ob-
vious. All the following results correspond to A=0, i.e., continuous weightings;
thus, there is no aliasing.

*

Integrals without limits are over the range of non-zero integrand.

TR 6239
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HARRIS’ WINDOWS

The first weighting to be considered is Hanning, for which there are only two
non-zero coefficients in (3):

a,= .5, a,=.5, V(D)= _sinlf)
2nLf(1-L2%) an

Its power response in dB is plotted versus Lf in figure 1, normalized to the peak
response at f = 0; that is

dB = 10 log) W(f)/ W(0)|2 (18)

is plotted.* The largest sidelobe is -31.47 dB. Since (5) is zero for the weights in (17),
but (9) is not, the Hanning window has an asymptotic decay of 18 dB/octave; this
decay is the first non-zero term in (10B).

The second weighting is Blackman (ref. 1, eq. 32):

a, = .42, a; = .50, a, = .08 . (19)

The window is depicted in figure 2. Again, (5) is zero, but (9) is not; thus the
asymptotic decay is 18 dB/octave. The largest sidelobe is -58.11 dB.

The ““exact’” Blackman weights are (ref. 1, p. 63)
a,= 7938718608, a, = 9240/18608, a, = 1430/18608 . 20)

Now (5) is not zero; therefore, the window decays at only 6 dB/octave as shown in
figure 3. However, the largest sidelobe is -68.24 dB, not -51 dB as cited in ref. I,
fig. 23. Also, the sidelobes in figure 3 are about 6 dB lower than those reported in
ref. I, fig. 23.

The following four windows are listed in the table on page 65 of ref. 1. The
“minimum’”’ 3-term weights are

ay = .42323, a, = .49755, a, = .07922 . 2h

Since (5) is not zero, the window decay is only 6 dB/octave, as shown in figure 4.
The maximum sidelobe is -70.83 dB, not -67 dB as reported in ret. 1, figure 24 and
page 64.

*  When the weighting is applied instead in the lag domain, as for Blackman-Tukey
spectral analysis, rather than in the time domain as presumed here, the window
appears linearly rather than as its square. In this case, the square must be removed
from the definition in (18), and all the plots require that the dB numbers on the
ordinate be halved. For example, the peak Hanning sidefobe is then -15.73 dB.
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The 3-term weights are
a, = .44959, a, = 49364, a, = .05677 . (22)

The corresponding window is given in figure 5 and has a maximum sidelobe of
-62.05 dB, rather than the -61 dB reported in ref. I, p. 65. Since (5) is not zero, the
decay is only at 6 dB/octave, as indicated by the dotted line.

The “*‘minimum’’ 4-term weights are*

a, = .35875, a, = .4882Y, a, = .14128, a; = .01168 . (23)

Although (5) is not zero, it is nearly so. Therefore, the initial decay of the window is
greater than 6 dB/octave; however, it must eventually decay only as 6 dB/octave.
The maximum sidelobe of the window is indicated in figure 6; it is -92 dB, as
reportedinref. 1.

The 4-term weights are

a, = .40217, a, = .49703, a, = .09892, a, = .00188 . (24)

The asymptotic decay is only 6 dB/octave, as shown in figure 7, and the largest
sidelobe i1s -74.39 dB, as claimed in ref, 1, p. 65.

*

These are not the weights actually listed in ref. 1, page 65. However, the values
listed there do not add up to 1; accordingly, we have modified them according to the
comment under eq. 34, and made them sum to I (with the lowest sidelobe possibie
by modifying just one of the last digits).

TR 6239
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RAPIDLY DECAYING WINDOWS WITH MINIMAL SIDELOBES

It was observed earlier that the window W(f) decays fairly rapidly for large f if (5)
is zero, and very rapidly if (9) is zero. Such windows will lead to spectral estimates
that are immune to strong interferences at frequencies removed from those of in-
terest. In this section, we will consider this class of windows in terms of the peak
sidelobe and asymptotic decay; the mainlobe width of each window is not discussed,
but is easily determined from the plots. Discontinuous weightings will be taken up
later.

If only two coefficients in weighting (3) are non-zero, satisfaction of (4), and
setting (5) equal to zero, yield

ag+a; =1, ay-a; =0. (25)

The Hanning window satisfies these requirements and is plotted in figure 1. Con-
volution sequence (15B) is simply -1/4, 1/2, -1/4.

Moving on to three non-zero coefficients in (3), if we satisfy (4), and set (5) and
(9) equal to zero, we find

a,=3/8, a,=4/8, a,=1/8. (26)
The weighting is

W(t)=—lL‘cos4(m/L) for |t|<L/2. Q7N

From (15B), the discrete Fourier series for convolution is

1,-4,6,-4,1
16 (28)

which are simply the binomial coefficients. As noted under (9), since the third
derivative of w(t) is continuous att = +L/2, the window decays at a 30 dB/octave
rate. The plot in figure 8 indicates that the largest sidelobe is -46.74 dB.

Instead of forcing (9) equal to zero, we can use the one degree of freedom left,
after (4) is satisfied and (5) is set equal to zero, to minimize the maximum sidelobes.
The optimal weights are found to

a, = .40897, a, = .5, a, = .09103 . (29)

~ The corresponding window is presented in figure 9. The asymptotic decay is 18
dB/octave, and the two equal sidelobes are of size -64.19 dB. This is 6.1 dB beiter
than the -58.1 dB sidelobe of the Blackman window, yet the asymptotic decays are
equal. Although the maximum sidelobe of the “*‘minimum” 3-term window in figure
4is 6.6 dB better, that decay is only 6 dB/octave rather than the 18 dB/octave decay
here.
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When we consider four non-zero coefficients in (3), we have several alternatives.
If we satisfy (4), set (5) and (9) both equal to zero, and also set the fourth derivative
of w(t) equal to zero at t = * L/2, we have four equations in four unknowns, with
solution

10,15,6,1

ay, a;, a,, a4y =
0 S T2 32 (30)

The weighting is

w(t)zl-Lcos"(m/L) for ftls%“, 31

LT e

o

and from (15B), the discrete Fourier series for convolution is

-1,6,-15,20,-15,6, -1 .
64 (32)

&

L

which are again the binomial coefficients. The window decays at a very fast rate of
42 dB/octave, since the fifth derivative of w(t) is continuous for all t. The plot in
figure 10 shows the maximum sidclobe to be -60.95 dB.

-

If we satisfy (4), and sct (5) and {9) both equal to zero, but use the remaining
degree of freedom to minimize the maximum sidelobes, the optimal weights are
determined to be

a, = .338946, a, = .481973, a, = .161054, a; = .018027 . (33)

The window is given in figure 11 and has two equal sidelobes of -82.60 dB. The
asymptotic decay is 39 dB/octave, since the third derivative of w(1) is continuous tor
all t. Comparison with the “*minimum’’ 4-term window in figure 6 reveals a dit- ‘
ference of 9.4 dB in the maximum sidelobe; however, the decay of figure 11 s much ' 1
faster at a 30 dB/octave rate. As far as the 4-term window in figure 7 is concerned, ;
- figure 11 has an 8.2 dB better maximum sidelobe and a much better decay, 30 L
x dB/octave versus 6 dB/octave.

T

4 Finally, if we satisfy (4), and set only (5) equal to zero, and use the remaining two
degrees of freedom to minimize the maximum sidelobes, the optimal weights are I
found to be

a, = .355768, a, = .487396, a, = .144232, a, = .012604 . (34)

The window is shown in figure 12 and has three equal sidelobes of -93.32 dB. Notice
that this level is better than the purported “minimum® 4-term level of -92 dB
claimed in ref. 1, pp. 64-65; and the asymptotic decay is 18 dB/octave, not 6
dB/octave. Furthermore, this level was achieved under the constraint of setting (5)
equal to sero. If we were to eliminate this constraint of a continuous weighting
function, a sidelobe level lower than -93,32 dB can be achieved. (This problem and




TR 6239

the determination of the true minimum 3-term window (to replace figure 4) are
undertaken in the next section.) Comparison with the 4-term window of figure 7
reveals an 18.9 dB peak-sidelobe improvement in ftigure 12 and a better decay of 18
dB/octave instead of 6 dB/octave.
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Figure 8. Window for a,=.375,a;=.5,a,=.125
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MINIMUM SIDELOBE WINDOWS

If only two coefficients in weighting (3) are non-zero, and we disregard the
continuity requirement (5), the one degree of freedom left, after normalization (4) is
satisfied, can be used to minimize the maximum sidelobes. The result is the familiar
Hamming window, plotted in figure 13, with coefficients

ap = .53836, a; = .46164 . (35)

The two equal peak-sidelobes are -43.19 dB, and the asymptotic decay is only 6
dB/octave, as dictated by (10B) when (5) is not zero.

For three non-zero coefficients in (3), satisfaction of (4) leaves two degrees of
freedom. These can be used to realize the minimum 3-term window in figure 14, for
which the optimal coefficients are

a, = .4243801, a, = .4973406, a, = .0782793 . (36)

There are three equal peak-sidelobes of -71.48 dB, which is .65 dB better than figure
4, with an asymptotic decay of 6 dB/octave for both.

When four coefficients are non-zero in (3), there are three degrees of frecdom left
after normalization (4). The minimum 4-term window results for cocfficients

a, = .3635819, a, = 4891775, a, = .1365995, a, = .0106411 , (37)

and is shown in figure 15. The four equal sidelobes are at level -98.17 dB, which is
6.16 dB better than figure 6, with an asymptotic decay of 6 dB/octave for both. This
sidelobe level is 4.85 dB better than figure 12, but the decay in figure 12 is 18

dB/octave.
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COMPARISON WITH KAISER-BESSEL AND YAN DER MAAS WINDOWS

The windows in figures 13, 14, and 15 are very similar to the Kaiser-Bessel
window. Specitically, the Kaiser-Bessel weighting and window are

w(l) :% I,(BVI-(@at/1):) for |y<L/2,

sin (VmL22-B2 ) porall .

W(f) = S——
Vrl2f2-B2 (3%)

respectively, where B is a parameter. If we choose B to make the first null of the
Kaiser-Bessel window lie at the three alternatives of Lf=2,3,4 (as in figures 13, 14,
and 15, respectively), we obtain the plots in figures 16, 17, and 18. The
corresponding maintobe shapes are indistinguishable, and the asymptotic decays are
all 6 dB/octave. The immediate sidelobes of the Kaiser-Bessel windows are several
dB larger than the minimum results in figures 13, 14, and 15, but the distant
sidelobes of the Kaiser-Bessel windows are over 10 dB lower for the examples
considered. Thus, a trade-off exists between the peak sidelobe and the distant
sidelobe level.

The windows here are also similar to the ideal impulsive van der Maas window
given by

w(t) =— N
L ViteuLe 2

B I (BVI - QULY )+l—d(l—%)+|76(l+~5‘-) for 1] <=
W(f) = cos (nLf)2-B2) forallf. (39)
This window is characterized by having the narrowest possible mainlobe width for a

specified sidelobe level, and vice versa. However, the window does not decay at all
for large f. The peak to sidelobe voltage level is SL=cosh (B), and the first null of

the window occurs at
AL
Lfy = 1+ 25 '
0 4 n? (40)

Thus, the first null location can be expressed in terms of the sidelobe level SL ac-
cording to

n

v iy12\ ¢
ltf() = (}T'* [ln(SL + S'hdi)] ) . (41

LT AIATI -
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Table 1 shows this null location and the actual location for several of the windows
presented earlier, when the peak sidelobes are equal; the agreement is close,
especially for those windows with a 6 dB/octave decay, figures 13, 14, and 15.

Table 1. Comparison of Null Location with van der Maas Case

van der Maas
Figure Number Null Location  Null Location

9 3 2.62
11 4 3.29
12 4 3.67
13 2 1.87
14 3 2.88
15 4 3.85

a8 -50 /\f
-80 [\[\[\A FAN .Y VNN

| [ATATATATAYA R

10 12 18
Lf

Figure 16. Kaiser-Bessel Window with First Null at Lf = 2
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DISCRETE HILBERT TRANSFORM

For a continuous-time real waveform x(t), the (voltage-density) spectrum
X(f) = f dt x(t) exp (-i2nft) (42)

is conjugate symmetric about {=0; i.e., X(-1)= X*(f). If we suppress the negative-
frequency components and double the positive-frequency components, we obtain
the analytic wavetorm:

X, (h =11+ sgn(h)] X, (43)
and

XL () = x(1) + ix(0) . (44)

Here x;,(t) is the Hilbert transform of x(t):

Xy(t) = an@xm = ';J' dr ;‘S’ (45)

When we consider instead a discrete-time real waveform with samples occurring
every A seconds, the spectrum has period 174, and the discrete Hilbert transform
(DHT) takes another form (ref. 2, ch. 7). Specifically, the Fourier coefticients ot an
N-point DFT of the waveform samples are multiplied by the sequence {u":: ’
where (ref, 2, p. 354)

I,n=0andn=N/2
u, = {2,0<n<N/2
0, N/2<n< N-1 (46)

However, this ideal characteristic exists only in a theoretical sense; its effect must be
approximated in practice {ref. 2, p. 36)).

A method of obtaining an accurate DHT for long data sequences is now
presented. We begin by considering a continuous cosine wave at frequency

x(1) = Acos 2nfyt + 6) . (47)

The spectrum of this waveform, from the infinite transtform (42), is a pair of im-
pulses:

X(h = {% exp (i) (f-t,) + —'% exp (-18) d(f + ) . 148)
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Then, as above,

X, (N = Aexp (i8) d(f-t,) ,
X, () = Aexp (i2nf,t + i0)

= A cos(2nafyt + 6) + i Asin2nfyl + 6) . (49

Thus, the Hilbert transform of x(t) in (47) is the sine component.

The procedure above succeeded because we completely eliminated the negative-
frequency components of (48). However, suppose we compute the spectrum from a
weighted time-{imited segment of x(1) in (47). Thus:

y(O) = w(Ox(n) ,
Y(f) = W) & X(f),

—? exp(if) W(f-t,) + —;1 exp(-i8) Wt + 1), (50)

where weighting w(t) satisfies (1). Figure 19 illustrates spillover of the negative- and
positive-frequency components across the £=0 border. This spillover can be
controlled by choosing a window W(f) with low near-by sidelobes and rapid decay
of distant sidelobes. Then, it Lf, is large enough, when we multiply Y(f) by
1 + sgn(f) 1o yield Z(1), there will be little distortion from the desired function

D(f) = Aexp(if) W(f-f) forallf;

d(t) = A exp(i2nf,t + i6) w(t) . (5D

We can then inverse Fourier transform Z(f) to yield z(t), and then divide z(t) by
weighting w(t), in an attempt to approximate analytic waveform x , (t). This method
will succeed in the interior region of the particular segment of the real data
waveform selected, but will be in error near the edges of the segment because the
neighboring data points (outside the selected segment) were never accounted for.
This insufficiency can be alleviated by using tapered temporal weighting and (say)
50% overlapped segments, but retaining only the central 50% of the output data
points of each segment, after the processing indicated above is carried out. How
successful the technique is depends critically on Lf, and the window W(f).

For a discrete-time wavetform, the considerations are similar 1o those presented
above, ¢.cept that we now employ the discrete multiplicative window (46) (instead
of 1+ sga(f)), and that Nyquist frequency (24) ' must also be considered, in ad-
dition to zero frequency, in terms of spillover. The procedure to be investigated is as
follows: a long real data sequence {x,} is broken up into segments of length N,
where adjacent segments overlap by 50%. Temporal weighting {w ”}: s
multiplicatively applied to the N data points of a segment, and an N-point DFT iy
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taken of this product sequence. Sequence {u, :l in (46) is then applied

multiplicatively to the complex DFT output. An inverse DFT of this product is
evaluated, and the result divided by weighting {wn}:’ ' Then only the interior 50%
of these N complex values are retained, and the other 50% discarded. By then
abutting values of adjacent segment outputs, we obtain the analytic waveform
sequence corresponding to the original real data sequence {x,}. Very long data
sequences can be handled in this manner; only the extreme edges are subject 10
significant error.

If we look at some of the better windows presented earlier, for example figures
11, 12, and 15, we see that very deep sidelobes are realized and maintained for
[Lf|>4. Thus for a sinusoid at frequency fj, spillover is small in figure 19 if

4 1

T<hy<ag -1 (52)

the upper bound is due to spillover at the Nyquist frequency. Since segment length L
is composed of N data points, (52) can be expressed as

4 1 4

N<f”A< 3 N- (53)
For example, a 1024-point DFT yields

004 < f,A <.496 . (54)

Thus, the majority of frequency components in sequence {x,} are capable of very
accurate Hilbert transformation. To widen the bounds in (52), we must increase L
and decrease A. If A is chosen to minimize aliasing in the first place, the only
recourse is to increase N, the number of points in each data segment. Thus, larger-
size DFTs should perform better in terms of lower error of the DHT and lower
allowed frequencies in the given sequence {x,}.

Yih

jt— /1

UQ,AW:N.

Figure 19. Spectrum of Weighted Time-Limited Segment of x()

_'0 '0
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SIMULATION RESULTS

The fifteen weightings given earlier are summarized in table 2. They have been
tried as candidates for the DHT technique presented in the previous section. Input
signals composed of real unit-amplitude pure tones at several different frequencies
and phases have been used to test the accuracy of the DHT technique. In particular,
tone frequencies f,, taking the four values

fod = {V2/5, V2/27, V2/65, V2/350} = {.283, .052, .022, .004} (55)

were selected. (The square root was used to avoid taking synchronized periodic
F samples of the input waveform. It was found that samples synchronized with the
tone frequency, such as f,A=.25, gave inordinately small errors.) The phases of

A

: Rl
N each tone were taken as 0 and -n/2 corresponding to a cosine and sine waveform,
2N respectively. Intermediate-phase tones are available as linear combinations of these
F & two cases.
. Tabte 2. Window Characteristics
th Peak Sidelobe Asymptotic Decay
Weighting (dB) (dB/octave)
.
1. Hanning -31.47 18
; 2. Blackman -58.11 18
| & 3. Exact Blackman -68.24 6
; 4. “*Minimum”’ 3-Term -70.83 6
3 5. 3-Term -62.05 6
6. “Minimum’’ 4-Term -92.01 6
7. 4-Term -74.39 6
8. 3-Term with Continuous Third Derivative -46.74 30
. 9. 3-Term with Continuous First Derivative -64.19 18
< 10. 4-Term with Continuous Fifth Derivative -60.95 42
v 11. 4-Term with Continuous Third Derivative -82.60 30
12. 4-Term with Continuous First Derivative -93.32 18
13. Hamming -43.19 6
14. Minimum 3-Term -71.48 6
. 15. Minimum 4-Term -98.17 6
Since the Hilbert transform of a cosine with arbitrary phase is a sine of the same &

phase (see (49)), we can compute the error of the DHT technique very easily for pure
tones. For the retained interior 50% output data points of each segment, four error
measures were evaluated. They were the maximum magnitude-error and the average

magnitude-error for both the real and imaginary parts of the analytic waveform q
sequence. The two error measures (maximum and average) for the reai part were
virtually zero, because of the trigonometric function error and the round-off noise
of the 12-digit calculator employed. The average magnitude-error measure for the
imaginary part of the analytic sequence, i.e., the crror of the discrete Hilbert
transform, is presented in tables 3-6 for the four tone frequencies listed in (55). A
program for the DHT technique and the error calculation is presented in the ap-
pendix.
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The first fact to observe from tables 3-6 is that the quality of the DHT varies
greatly with the window. In fact, the ratio of errors can become as large as 300,000
when we consider difterent windows for a specified waveform. In order to present
the numerical values more conveniently for comparison, the errors have been scaled
by 10% in tables 3-5 and by 10° in table 6. Thus, some of the errors listed in tables 3-6
are small indeed.

The maximum magnitude-error, for all the input frequencies, phases, and
windows considered, was approximately 4-to-6 times larger than the average
magnitude-error. (It has not been tabulated here, in order 10 save space.)

When the data frequency, f,, is near the center of the zero-to-Nyquist frequency
band, the best windows are observed from tables 2 and 3 to be those tor which the
asymptotic decay is 18 dB/octave or better. This holds regardless of the size of the
near-by sidelobes. Even the window in figure 15, with a peak sidelobe less than -98
dB, does not perform as well as the Hanning window which has a -31.5 dB sidelobe;
in fact, the error is about 70 times larger. This numerical result is consistent with the
discussion surrounding figure 19 — we have virtually eliminated spillover across the
f=0and f =.5/A borders by using rapidly decaving windows, when £,~.257A.

When the frequency, f,, is lowered to one-tenth of the Nyguist frequency, the best
windows are those with decays of 30 dB/octave or better; see table 4. This trend
continues in table § for f,, equal 10 .044 of the Nyquist trequency, where the sole
window with a 42 dB/octave decay is observed to be best.

However, when data frequency, f;, approaches the bounds of (53), a ditferent
ordering of windows is observed; sec table 6). Now the windows with the deepest
near-by sidelobes (cases 6 and 15 in table 2) have the least error, although the range
of errors in table 6 are less pronounced than those in the previous tables. Thus, the
best weighting w(1) to employ depends on the spectrum ot the data sequence {x,
that we are subjecting to the DHT. A compromise between deep near-by sidelobes
and fast asymptotic decay must be accepted for a waveform occupying most of the
zero-to-Nyquist frequency band. For example, the average magnitude-crrors for the
minimum 4-term window of figure 15 are approximately

SE-6, 1.6F-6, 2.6E-6, 6.3E-6 (56)

for the four frequencies considered in tables 3-6. This is a very small error and
indicates that the proposed DHT technique has considerable merit, provided the
weighting in (50) is chosen appropriately.

Other waveforms were simulated and subjected to the DHT and error analysis.
They included narrow-band waveforms, high-frequency tones (ncar Nyquist), and
other phases than 0 and -n/2. No surprises were encountered; results were con-
sistent with those already presented above. Also a simple Gaussian weighting with
several different standard deviations was tried; the best Gaussian weighting occured
when it was set equal to .0053 at the segment edges and .27 at the edges of the
retained points. Although the error of the DHT could be made to be very good for
tone frequencies well-removed from zero and Nyguist frequency, it was poorer for
frequencies fairly near zero and Nyquist: the worst error was 1.36E-4 at {,A
0.044, which is 20 times worse than can be realized with weighting 15 in table 6. This
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is due to the spillover caused by the wide mainlobe of the Gaussian window when
the effective duration of the weighting is chosen narrower than the segment length.

Table 3. Average Magnitude-Error for f)A = V2/5 = 283

Error x 10° for

Weighting Cosine

Sine

2.83
1.89
6050.
4350.
10500.
70.4
2090.
1.38
1.75
1.38
1.38
1.41
52400.
4760.
415.

8.52
4.18
7470.
5370.
12900.
86.4
2580.
1.45
3.47
1.45
1.45
1.72
64700.
5810.
512.

Table 4. Average Magnitude-Error for fyd = V2/27 = .052

Error x 10° for

L Weighting Cosine

Sine

305.
138.
16300,
11700.
28200.
164.
5580.

.56
108.

23

37

243

142000,
12700.
1090,

454.
206.
24400.
17500.
42300.
245,
8360.

.77
161.

.23

.48

36.2

213000.
19000.
1630.
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Table 5. Average Magnitude-Error for fyd = V2/65 = .022

Error x 10° for

Weighting Cosine Sine
I 4360. 6020.
2 1950. 2700.
3 33100. 45800.
4 23300. 32200.
5 58000. 80300.
6 61.1 52.0
7 10700. 14900.
8 39.5 543
9 1520. 2110.
10 .93 1.27
11 20.4 28.1
12 326. 452.
13 300000. 416000.
14 25300. 35100.
15 1890. 2620.

Table 6. Average Magnitude-Error for fyd = V2/350 = .004

Error x 109 for

Weighting Cosine Sine

! 495. 501.

2 154. 86.1

3 24.0 50.6

4 45.2 50.5

5 61.5 129.

6 7.01 7.27

7 29.3 15.4

8 132. 241.

9 95.4 45.6
10 189. 398.
11 34.0 70.6
12 9.07 15.3
13 899. 429,
14 41. 53.3
1S 3.7 6.31

29
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SUMMARY

When strong interference, either tonal or narrowband, occurs additively with a
desired signal, its effect on frequencies removed from the interference band can be
greatly reduced by using windows with low sidelobes and significant decay of the
sidelobes. Thus close-by interference rejection requires the immediate sidelobe
region of the window to be small, while distant interference rejection requires a
rapidly-decaying sidelobe response. The type of windows considered here furnish
several alternative choices, depending on the application of interest, and range from
-31 dB to -98 dB for the peak sidelobe, or 6 dB/octave to 42 dB/octave for the
asymptotic decay. The weighting given by (3) is non-negative for all the numerical
coefficients listed here.

Use of some of these windows in a proposed discrete Hilbert transform technique
yields very small errors over a wide range of frequency components of the given
data sequence, provided that 50% overlapped processing is employed. Two DFTs
are necessary per segment, and the edge 50% of the output values of each segment
must be discarded. Larger-size DFTs yield less error, especially for frequencies near
the bounds in (53), but they require more storage.
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Appendix
PROGRAM FOR DISCRETE HILBERT TRANSFORM

The subroutine for the DHT technique described earlier is contained in lines 660-
820 of the program listed below in table A-t. The remainder of the program con-
tains the data creation, the weightings in lines 100-240, the error calculation, and a
DFT in the subroutine beginning with line 830. On input to the DHT subroutine call
in line 500, array X contains the N-point data segment to be Hilbert transformed,
and array Y is zero. On output from the DHT subroutine call, elements N/4 to
3N/4 of arrays X and Y contain the central half of the original data segment and its
DHT, respectively.

Table A-1. Program for Discrete Hilbert Transform

FAdel1=S@R(2)-5 t §5,27,65,35%8
Phaze=-Pl-2

H=1324 ! SIZE OF FFT

PRINTER IS ©

PRINY "Fédel =";F@del, "Fhase ="j;Phazs,"H ="1H
PRINT

QPTION BASE 1
DIM ¥(1824),Y01824, 010232, 518247, Wi 1923
DIM H(@:S9),AC8:3)

DATA .S5,.5,0,0

DATA .42,.5,.68,0

128 DATH .42€659,.49656,.87685,0
130 DATH .42323,.43755,.0879%22,4¢

139

DATH .44953,.49364,.85677,0

150 DATA .25875,.483829,.14128,.01168

1€@

DATA .44217,.437083,.8989%92,.00138

17@ DATA .375,.5,.125,0

180

DATA .40897,.5,.089163,08

190 DATA .3125,.46&75,.1875,.93125

260 DATA .33894€,.431973,.161054,.018027
218 DATA .355768,.487396,.144232,.212694
220 DATR .53836,.46164,0,0

279 DATA .424368d1,.49734086,.8752793,0
249 DATA .3635819,.4891775,.1365995,.01064:1
259 RERD H(*)

260 T=2+FPl4FBdel

270 FOR K=§ TO N

2¢0 B=TxK+Phase

290 C{K>»=COS(B)

300 S(K»=SIN(B)

310 NEXT K

32

FOR Nc=1 TO 1S

330 FOR L=9 TO 3

340 ACL)=H(L+4%(Nc-12)

350 NEXT L

360 PRINT "C"{Nc3 " "iRCBIJACL2;R(ZI;AC
3706 RC1r»=-ACL)
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380
390
L Y417
419
420
428
448
45@
480
47a
420
498
See
S19
i S20
50
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690

7900

710

- 720
= 73¢
740

1)

760

779

. 780
790

860

810

820

830

AC3>=-R(3)

T=2%P1 (N+1>

FOR K=1 TO N

B=TxK

S=R(B>

FOR L=1 TO 3

S=S+ACL*COS LB

NEXT L

Wik »=S

NEXT K

MAT X=C

MAT ¥=Z2ER

CALL Dht N, HC*®) Y (#0 Wiwid
Mr=Mi=Rr=Ai=0

FOR K=N-4 TO 3%H-4

Dr=REBSCCCKI=HOKD D ;
Di=RBSCSCKI =YK N
Mr=MAX M, Dro
My=HAXK<MI,Did

Ar=Ar+0r

Ai=Ai+D1i

HEXT K

FRIHT Mr ,Mi,Ar-C,S#M+12,A1-0,SxH+1.
FRINT

HEXT HMc

FRINMT LIHWC3:

FRINTER 1% 1l&

END

SUR Nkt O EleD e WO Ed D LIZCRETE AILEERT TRAWNSFORM
MAT X=X.UW

CALL Fft1@CN,X(*),¥ (%))
FOR K=2 TO N-2
RKI>=X(K)*2
Y(KI=-Y(K)*2

NEXT K

FOR K=N-2+2 TO N
A(KI=Y(K)>=0

NEXT K

CALL Ffrtl1B¢N, R(*),Y(*))
FOR K=N-4 TGO 3%#N-4
T=1/CHCKY #ND
KCKO=XCK)#*T
Y(K)=~Y(K)#*T

Zaite NTIET L N

NEXT K
SUBEND
SUB FFt10(N,KC#),¥ (%)) ' N {= 27108 = 1824, H=Z~INTEGER




Initial Distribution List
NO. OF
ADDRESSEE COPIES

ASN (RE&S) (D. E. Mann)
OUSDR&E (W. J. Perry)
Dep. USDR&E (Res & Adv Tech) (R. M. Davis)
Dep. USDR&E (Dir Elect & Phys Sc) (L. Wiseberg)
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